Quantum-Inspired Kolmogorov-Arnold Network (QKAN)

Welcome to the documentation for the Quantum-Inspired Kolmogorov-Arnold Network (QKAN)!

This project builds upon the concepts introduced in the paper Quantum Variational Activation Functions Empower Kolmogorov-Arnold Networks and is open-sourced at GitHub repository Jim137/qkan.

QKAN is a novel neural network architecture that integrates Quantum Variational Activation Functions (QVAFs) with the Kolmogorov-Arnold Network (KAN) paradigm, designed for expressive and efficient function approximation and machine learning tasks.

Installation

Install via pip:

pip install qkan

Or install from source:

git clone https://github.com/Jim137/qkan.git
cd qkan
pip install -e .

We recommend using a virtual environment to avoid conflicts with other packages:

python -m venv qkan-env
source qkan-env/bin/activate  # On Windows: qkan-env\Scripts\activate
pip install qkan

Quick Start

Here’s a minimal working example for function fitting using QKAN:

import torch

from qkan import QKAN, create_dataset

device = "cuda" if torch.cuda.is_available() else "cpu"

f = lambda x: torch.sin(20*x)/x/20 # J_0(20x)
dataset = create_dataset(f, n_var=1, ranges=[0,1], device=device, train_num=1000, test_num=1000, seed=0)

qkan = QKAN(
   [1, 1],
   reps=3,
   device=device,
   seed=0,
   preact_trainable=True,
   postact_weight_trainable=True,
   postact_bias_trainable=True,
   ba_trainable=True,
   save_act=True, # enable to plot from saved activation
)

optimizer = torch.optim.LBFGS(qkan.parameters(), lr=5e-2)

qkan.train_(
   dataset,
   steps=100,
   optimizer=optimizer,
   reg_metric="edge_forward_dr_n",
)

qkan.plot(from_acts=True, metric=None)

Citation

If you find this project useful in your research, please consider citing the following paper:

@article{jiang2025qkan,
   title={Quantum Variational Activation Functions Empower Kolmogorov-Arnold Networks},
   author={Jiang, Jiun-Cheng and Huang, Yu-Chao and Chen, Tianlong and Goan, Hsi-Sheng},
   journal={arXiv preprint arXiv:2509.14026},
   year={2025},
   url={https://arxiv.org/abs/2509.14026}
}

Indices and Tables